بررسی مقایسه‎ای نگهداری برخی جلبک‏های آب شیرین به روش‎های انجماد خشک و محافظت سرمایی

نوع مقاله : مقاله پژوهشی

نویسندگان

چکیده

این تحقیق به منظور بررسی امکان نگهداری جلبک‏های آب شیرین به روش انجماد خشک و محافظت سرمایی و مقایسه قابلیت رشد آنها انجام شد. 3 گونه جلبک آزمایشی شامل Chlamydomonas moewusii، Scenedesmus obliquusو Chlorococcum olefaciens پس از تهیه محیط کشت زایندر در 6 ارلن به مدت 20 روز کشت داده شدند. سپس هر گونه با نه تکرار (سه تکرار برای هر یک از روزهای اول، پنجم و دهم) به روش‏های انجماد خشک و محافظت سرمایی برای نگهداری آماده گردید. جلبک‏ها در ادامه، کشت مجدد شده و رشد آنها با سنجش کلروفیل a طی روزهای اول، پنجم و دهم پس از خروج از شرایط حفاظتی بررسی گردید. تعداد 9 ارلن نیز برای هر گونه جلبکی تنها با افزودن محیط کشت اختصاصی جلبک به عنوان تیمار شاهد آماده گردید تا مقیاس مشابهی برای بررسی رشد جلبک‏ها در روزهای یکسان فراهم آید. نتایج نشان داد که بیشترین رشد هر سه گونه در انجماد خشک پس از گذشت ده روز از کشت مجدد به دست آمد که به شکل معنی‏داری (p<0.05) بالاتر از تیمار شاهد بود. با این وجود تفاوت معنی‏داری در میزان رشد ScenedesmusobliquusوChlorococcumolefaciensپس از محافظت سرمایی و انجماد خشک به دست نیامد (p>0.05). یافته‏های پژوهش حاضر نشان داد که هر دو روش حفاظتی برای نگهداری سه گونه جلبک سبز مطالعاتی مناسب است، گرچه روش انجماد خشک ‏در گونه Chlamydomonasmoewusii نتایج بهتری را ارایه نمود.

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of some freshwater green algae conservation using the of freeze-drying and cryopreservation methods

نویسندگان [English]

  • E Fayazi Atdotan
  • H Rajabi Islami
چکیده [English]

This study was conducted to evaluate the possible conservation of freshwater green algae using the freeze-drying and cryopreservation methods and comparative of their growth potential. Three experimental algae including Chlamydomonas moewusii, Scenedesmus obliquus, and Chlorococcum olefaciens were cultured for 20 days in 6 Erlenmeyer flasks after preparation of Zinder growth medium. Each algal strain was preserved according to freeze-drying and cryopreservation protocols with 9 replications (3 replications for the days of 1, 5, and 10). Algae were then re-incubated and their growth was evaluated in 1, 5, and 10 days after preservation. Another 9 Erlenmeyer flasks for each algal species were prepared as control treatment by adding the respective growth medium to consider the growth of algae in the same days with similar scale. Highest growth of all experimental algae was obtained after 10 days which was significantly higher than the corresponding control treatments (p<0.05). However, no significant difference was observed in the growth of Scenedesmus obliquus andand Chlorococcum olefaciens after freeze-drying and cryopreservation (p>0.05). Results of the present study illustrated that both preservative methods are suitable for maintenance of experimental algae, although freeze-drying provided better results in Chlamydomonasmoewusii.

کلیدواژه‌ها [English]

  • Chlamydomonas moewusii
  • Freeze- drying
  • SCENEDESMUS OBLIQUUS
  • Chlorococcum olefaciens
  • Freeze- drying
  • Cryopreservation
عابدینی ن.، رجبی اسلامی ه. و عصاره ر.، 1394. اثرات بازدارندگی نانوذره دی‎اکسید تیتانیوم بر رشد جلبک‏های آب شیرین. محیط زیست طبیعی، پذیرفته شده برای چاپ.
Adams, G., 2007. The Principles of Freeze-Drying. In: Day J. and Stacey G. (ed), Cryopreservation and Freeze-Drying Protocols, 2nd edition. Humana Press, Totowa, New Jersey. pp. 15–38.
Apt, K.E. and Behrens, P.W., 1999. Commercial developments in microalgal biotechnology. Journal of Phycology, 35: 215-226.
Arisz, S.A., van Himbergen, J.A.J., Musgrave, A., van den Ende, H. and Munnik T., 2000. Polar glycerolipids of Chlamydomonas moewusii. Phytochemistry, 53(2): 265-270.
Barsanti, L. and Gualtieri, P., 2006. General Overview, Algae Anatomy, Biochemistry and Biotechnology. CRC Press, NewYork. 361p.
Billard, R., 2001. Techniques of Genetic Resource Banking in Fish. In: Watson P.F. and Holt W.V. (Eds), Cryobanking the Genetic Resource. CRC Press, NewYork. pp. 145-158.
Bui, T.V.L., Ross, I.L., Jakob, G. and Hankamer, B., 2013. Impact of Procedural Steps and Cryopreservation Agents in the Cryopreservation of Chlorophyte Microalgae. PLoS ONE, 2013; 8(11): e78668.
Coleman, A.W. and Maguire, M.J., 1983. Cytological detection of the basis of uniparental inheritance of plastid DNA in Chlamydomonas moewusii. Current Genetics, 7(3): 211-218.
Day, J.G., 2007. Cryopreservation of Microalgae and Cyanobacteria. Methods in Molecular Biology, 368: 141-151.
Day, J.G., Watanabe, M.M., Morris, G.J., Fleck, R.A. and McLellan, M.R., 1997. Long-term viability of preserved eukaryotic algae. Journal of Applied Phycology, 9: 121-127.
Day, J., Fleck, R. and Benson, E., 2000. Cryopreservation-recalcitrance in microalgae: novel approaches to identify and avoid cryo-injury. Journal of Applied Phycology, 12(3-5): 369-377.
El Gamal, A.A., 2010. Biological importance of marine algae. Saudi Pharmaceutical Journal, 18(1): 1-25.
Gwo, J.C., Chiu, J.Y., Chou, C.C. and Cheng, H.Y., 2005. Cryopreservation of a marine microalga, Nannochloropsis oculata (Eustigmatophyceae). Cryobiology, 50(3): 338-343.
Guiry, M.D. and Guiry, G.M., 2015. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; cited 10 March 2015.
Hasan, M.R. and Chakrabarti, R., 2009. Use of algae and aquatic macrophytes as feed in smal-scale aquaculture: a review. FAO Fisheries and Aquaculture Technical Paper. No. 531. Rome, 123p.
Hejazi M.A., Barzegari A., Hosseinzadeh Gharajeh N. and Hejazi M.S., 2010. Introduction of a novel 18S rDNA gene arrangement along with distinct ITS region in the saline water microalga Dunaliella. Saline Systems, 6:4.
Hoefman, S., Pommerening-Röser, A., Samyn, E., De Vos, P. and Heylen, K., 2013. Efficient cryopreservation protocol enables accessibility of a broad range of ammonia-oxidizing bacteria for the scientific community. Research in Microbiology, 164(4): 288-292.
Irihimovitch, V. and Yehudai-Resheff, S., 2008. Phosphate and sulfur limitation responses in the chloroplast of Chlamydomonas reinhardtii. FEMS Microbiology Letters, 283(1): 1-8.
Jeffrey, S.W. and Humphrey, G.F., 1975. New spectrophotometric equations for determining chlorophylls a, b, c and c2 in higher plants, algal and natural phytoplankton. Biochemie und Physiologie der Pflanzen, 167: 191-194.
John, M.J., 2011. The Freshwater Algal Flora of the British Isles. Cambridge University Press, Cambridge, UK. 702p.
Kawachi, M. and Noël, M.H., 2005. Sterilization and sterile technique. In: Andersen R.A. (ed), Algal culturing techniques. Elsevier Academic Press, Burlington, Canada. pp. 65-81.
Komarek, J., 1973. Culture collections. In: Carr N.G. and Whitton B.A. (Eds), The biology of blue-green algae. Blackwell Scientific publication, USA. pp. 519-524.
Kopeika, E., Kopeika, J. and Zhang, T., 2007. Cryopreservation of fish sperm. Methods in Molecular Biology, 368: 203-17.
Krumnow, A.A., Sorokulova, I.B., Olsen, E., Globa, L., Barbaree, J.M. and Vodyanoy, V.J., 2009. Preservation of bacteria in natural polymers. Journal of Microbiological Methods, 78(2): 189-194.
Liu, L., Wei, Q., Guo, F. and Zhang, T., 2006. Cryopreservation of Chinese sturgeon (Acipenser sinensis) Sperm. Journal of Applied Ichthyology, 22: 384-388.
Melián-Martel, N., Sadhwani, J.J., Malamis, S. and Ochsenkühn-Petropoulou, M., 2012. Structural and chemical characterization of long-term reverse osmosis membrane fouling in a full scale desalination plant. Desalination, 305: 44-53.
McCleary, J., 1987. Vacuum freeze-drying, a method used to salvage water-damaged archival and library materials: a RAMP study with guidelines. General Information Programme and UNISIST. Unesco, Paris:, 63p.
Miller, D.E., Green, J.C. and Shiroyama, T., 1978. The Selenastrum capricornatum Printz algal assay bottle test. Experimental Design, application and Data Interpretation Protocol. Environmental Protection Agency, U.S. 126p.
Noroozi, M., Omar, H., Tan, S.G. and Napis, S., 2011. Studies on the Genetic Variation of the Green Unicellular Alga Haematococcus pluvialis (Chlorophyceae) Obtained from Different Geographical Locations Using ISSR and RAPD Molecular Marker. Molecules, 16: 2598-2608.
Park, H., 2006. Long-term preservation of bloom-forming cyanobacteria by cryopreservation. Algae, 21(1): 125-1131.
Reddy, C.R.K., Gupta, V. and Jha, B., 2010. Developments in Biotechnology of Red Algae. In: Seckbach J. and Chapman D.J (Eds) Red Algae in the Genomic Age. Springer, Netherlands, pp. 307-341.
Richmond, A., 2006. Handbook of microalgal culture: biotechnology and applied phycology, Blakwell Publishing, Iowa. 588p.
Shearer, J.f. and Jackson, M., 2006. Liquid culturing of microsclerotia of Mycoleptodiscus terrestris, a potential biological control agent for the management of hydrilla, Biological Control, 38(3): 298-315.
Si, W., Zheng, P., Li, Y., Dinnyes, A. and Ji, W., 2004. Effect of glycerol and dimethyl sulfoxide on cryopreservation of rhesus monkey (Macaca mulatta) sperm. American Journal of Primatology. 62(4): 301-306.
Taylor, R. and Fletcher, R., 1998. Cryopreservation of eukaryotic algae - a review of methodologies. Journal of Applied Phycology, 10(5): 481-501.
Tindal, B., 2007. Vacuum-Drying and Cryopreservation of Prokaryotes. In: Day J. and Stacey G. (ed), Cryopreservation and Freeze-Drying Protocols, 2nd ed. Humana Press, Totowa, New Jersey. pp. 73–98.
Triemer, R. and Brown Jr, R.M., 1975. The ultrastructure of fertilization in Chlamydomonas Moewusii. Protoplasma, 84(3-4): 315-325.
Tzovenis, I., Triantaphyllidis, G., Naihong, X., Chatzinikolaou, E., Papadopoulou, K., Xouri, G. and Tafas, T., 2004. Cryopreservation of marine microalgae and potential toxicity of cryoprotectants to the primary steps of the aquacultural food chain. Aquaculture 230(1–4): 457-47
Wagner, S., Hoffer, S. and Holt, Z., 2005. Comparative Analysis of Two Cryopreservatives on Two Marine Plankton Species: Isochrysis and Pseudo-nitzschia. UWT Journal on the Environment. 3: 1-8.