پرسی مقدماتی روابط بین ابعاد مختلف صدف‌های محار در بندر مقيم

چکیده

نمونه‌های صدف مورایید ساز مجاز (Pinctada radiata) در فصل پاییز و یک بار در فصل زمستان 1372 از بندر مقيم (۲۶ درجه و ۵۰ دقیقه شمالی و ۵۳ درجه و ۲۰ دقیقه شرقی) جمع‌آوری و برای مطالعه رابطه بین ابعاد خز صدف به آزمایشگاه متعلق گردیدند. رگرسیون ساده خزی رابطه قدرتندی بین طول و طول پاشنه صنف را آشکار کرد \(Y = 0.01 / \sqrt{X + 0.964} \) \((p=0.95) \). نرمال برای آن‌ها به قرار زیر است.
مقدمه
بعضی بسترها بالغ غنی بودن از لحاظ غذایی سبب رشد صدف‌ها است در حالیکه بسترها با شرایط نامتولب باعث ایجاد صدف‌های مرضی و بدشکل می‌گردد، بنابراین ما پیام‌های دانش‌آموزی (Khamdan 1992) با ازا شناخت بسترها مطلب برای رشد صدف را داشته باشیم. با اندکی گیره ابعاد مختلف صدف‌ها در یک بستر طبیعی و غنی از مواد غذایی می‌توان به ابعاد طبیعی صدف‌ها در یک شرایط نرسال و مناسب پر بود، با انجام اعمال آماری بر روی این داده‌ها روابط مختلفی که بین ابعاد در این شرایط طبیعی وجود دارد دارد بدست می‌آید و با داشتن این مفروضات در هر منطقه با پویا‌تری صدف‌ها آن تأثیر بزرگی می‌توان به مناسب بودن بستر پی برد.

شکل 1- نقشه محل توسعه برداری در خلیج فارس

در سال 1986 به جستجوی رابطه بین ضخامت و طول و طول پاشنه صدف Sung kyoo yoo می‌رسیم که با توجه به این روابط بسترها مناسب برای رشد و بسترها مناسب برای نگهداری صدف را از هم تفکیک نمود.

بندر میانی با تراکم 30 سال در مدت میانی بین از غنی‌ترین بسترها صدف‌های مراری ساز و خلیج فارس می‌باشد. این مقاله به بررسی رابطه بین ابعاد مختلف صدف‌های مراری که جمع‌آوری شده از قسمت شرقی این بندر می‌پردازد.
مواد و روش کار

صدف‌های متحرک با بوسیله روش غواصی از بندر مقام جمع آوری و به کمک یک آب شور و هواده بسته بوده، مناسب (بدن‌بندی گرم بودن هوا در اوایل پاتای) به مرکز تحقیقات بندر لنگه منتقل گردیدند. درآزمایش‌ها این صدف‌ها بر اساس وزن‌نشان به چهار گروه بیش از ذیل تقسیم شدند:

<table>
<thead>
<tr>
<th>وزن (گرم)</th>
<th>تعداد n</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-25</td>
<td>26</td>
</tr>
<tr>
<td>25-35</td>
<td>53</td>
</tr>
<tr>
<td>35-50</td>
<td>36</td>
</tr>
<tr>
<td>50-65</td>
<td>38</td>
</tr>
</tbody>
</table>

اندازه‌گیری ابعاد به وسیله ورنیه (با دقت 0.02) و آنالیز آماری به کمک نرم‌افزارهای کناترو و استات گراف انجام شد. اطلاعات به دست آمده از چهار گروه به طور مجزا و همراه با هم به وسیله تست های آماری رگرسیون و همبستگی مطالعه و درستی آن به وسیله تست تی مورد بررسی واقع گردید.

\[T = \frac{\sqrt{n-1}}{\sqrt{r - r'}} \]

طول پایه = HL
ارتفاع صدف = DVM
طول صدف = APM

شکل 2 - ابعاد مختلف صدف متحرک (اقتباس 1992)

(Gervis, 1992)
نتایج

مقادیر محاسبه شده ضرایب همبستگی (r) و (1) برای تمام گروه‌ها به صورت جدول‌گانه و در مجموع محاسبه شده و به طور خلاصه در جدول شماره یک آورده شده است. در گروه‌های دوم بین تمام ابعاد و به خصوص طول و طول پاشنه صدف (98/2) روابط معنی‌داری وجود دارد. در گروه سوم و چهارم روابط معنی‌داری بین ابعاد موجود نیست اگرچه رابطه بین طول و طول پاشنه صدف خطی می‌باشد. با دنیا گرفتن تمام گروه‌ها با هم بین تمام ابعاد خصوصاً طول و طول پاشنه (94/2) رابطه‌های معنی‌داری موجود است.

جدول شماره 1- مقادیر محاسبه شده ضرایب همبستگی (r) و (1) صدف‌های مهار بند مقام

<table>
<thead>
<tr>
<th>گروه</th>
<th>DVM & T</th>
<th>DVM & APM</th>
<th>DVM & HL</th>
<th>T & APM</th>
<th>T & HL</th>
<th>APM & HL</th>
<th>i</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0/55</td>
<td>0/32</td>
<td>0/58</td>
<td>0/42</td>
<td>0/54</td>
<td>0/64</td>
<td>2/05</td>
</tr>
<tr>
<td>2</td>
<td>0/81</td>
<td>1/26</td>
<td>0/79</td>
<td>0/54</td>
<td>0/68</td>
<td>0/73</td>
<td>2/05</td>
</tr>
<tr>
<td>3</td>
<td>0/55</td>
<td>1/24</td>
<td>0/75</td>
<td>0/50</td>
<td>0/65</td>
<td>0/74</td>
<td>2/01</td>
</tr>
<tr>
<td>4</td>
<td>0/77</td>
<td>0/44</td>
<td>0/65</td>
<td>0/42</td>
<td>0/57</td>
<td>0/69</td>
<td>2/03</td>
</tr>
<tr>
<td>تتم</td>
<td>0/94</td>
<td>0/93</td>
<td>0/90</td>
<td>0/90</td>
<td>0/93</td>
<td>0/90</td>
<td>1/05</td>
</tr>
</tbody>
</table>

راستی = DVM
طول = APM
طول پاشنه = HL
ضخامت = T
بحث
نمودار پراکندگی بین تمام ابعاد در اشکال یک تا شش آورده شده است.
صدف محار بخشیرین رشده را در سال اول زندگی داشته و این رشد در طی دومین و سومین سال بخشیری از سالهای چهارم و پنجم می‌باشد (Wada, 1993)، تحت شرایط مزرعه رشد اویسته‌های Torchor که در سه ماهه اول زندگی بسیار سریع می‌باشد (Jeyadaskarn, 1993) مقادیر ضریب همبستگی (r) و (t) در جدول یک نمایانگر آن است که صدف‌های محار گروه اول و دوم از یک رشد خطی هم‌مانند تعداد ابعاد بر خودداریند در حالتی که از آن به بعد در گروه سوم و چهارم این رشد خطي هم‌مانند و جهت ندارد. بنابراین صدف‌های تا زمانی که وزنشان به حدود 25 گرم و با به عبارتی طولشان به حدود 5/1 میلیمتر می‌رسند دوره جایی بهده در حالی که از آن به بعد رشد در ابعاد مختلف با سرعت‌های گوناگون انجم می‌شود. در سال 1988 دریافت که ارتفاع صدف با سرعت chellam در سال 1/21/12 برابر ضخامت رشد می‌کند و همان‌طور که در نمودار سه مشاهده می‌شود این رقم در مورد Gervis صدف‌های محار بندر مقوم 2/23 می‌باشد. اما تعريف که ابتدای در ارتفاع صدف به سرعت انفزایش یافته تا تزدیک به بخشیرین اندانها رشد و از آن به بعد ضخامت انفزایش یافته می‌کند در حالی که نمودار خطي شماره سه نمایانگر رشد هم‌مانند ارتفاع و ضخامت صدف می‌باشد الگو چه سرعت رشد ارتفاع بخشیر از ضخامت است.
نمودار 4 و 5 مشاهده می‌دهد که یک رابطه لگاریتمی بین ضخامت و طول و همچنین بین ضخامت و طول باشند موجود است، بنابراین صدف‌ها به سرعت از اندانه 3 تا 4 سانتی‌متر در طول در طول باشند رشد کرده و سپس ضخامت آنها انفزایش می‌یابد معادله خطی رگ‌سیون طول باشند نسبت به طول صدف در نمودار شماره 6 آمده است این معادله به شرح زیر می‌باشد:

\[y = 0.866 + 0.74x \]

به عبارتی طول باشند به سرعت 74/0 طول صدف انفزایش می‌یابد. این نمودار به خوبی نشان می‌دهد که طول و طول باشند صدف در تمام طول رشد به صورت هم‌مانند با هم انفزایش می‌یابند (94/0/1993)
Chellam. A. 1978. Growth and biometric relationship of pearl oyster pinctada fucata (Gould) . Indian J Fish. 35 (1) : 1 - 6

تشکر و قدردانی

لازم می‌دانم از آقای بیانی درخواست بی‌پایانی و از خانم دیانی برای تابیت این مقاله تشکر نمایم.
Preliminary survey on the relationship between dimensions of *pinctada radiata* in Moqam

Fariborz Ehteshami, DVM
Persian Gulf Molluscs Research Centre
Bandar Lengeh I.F.R.T.O

ABSTRACT

Samples of the pearl oysters *pinctada radiata* were collected from Moqam (lat. 26 50 00N and long. 53 27 00E) on October and January 1992 and were analyzed to study the relationship among linear measurement.

Simple linear regression has revealed that there is significant relationship between APM and HL dimension of *pinctada radiata*. In Moqam (p=0.95) This formula is calculated to be:

\[Y = 0.866 + 0.74 \times X \]

(Y = Shell length and X=Hinge length)